Chapter 4

4.2

X has probability mass function given by
a)

a	-1	0	1	2
$\mathrm{p}(\mathrm{a})$.25	0.125	0.125	0.5

$\mathrm{Y}=\mathrm{X} * \mathrm{X}$, so Y takes on values 0,1 , and 2 . Its probability mass function is given by

b	0	1	2
$\mathrm{p}(\mathrm{b})$	0.125	0.375	0.5

This happens because there are two values of X which yield $\mathrm{Y}=1$.
b)

For X , the probability distribution function is

```
0 x<-1
0.25 -1 \leqx < 0
0.375 0}\leqx<
0.5 1\leqx<2
1.0 2 \leq x
```

For Y, the probability distribution function is
$0 \quad \mathrm{x}<0$
$0.125 \quad 0 \leq x<1$
$0.5 \quad 1 \leq x<2$
$1.0 \quad 2 \leq x$

From these we can see that
$\mathrm{P}(\mathrm{X} \leq 1)=0.5$
$\mathrm{P}(\mathrm{X} \leq 3 / 4)=0.375$
$P(X \leq 0.14159 \ldots)=0.375$
$\mathrm{P}(\mathrm{Y} \leq 1)=0.5$
$\mathrm{P}(\mathrm{Y} \leq 3 / 4)=0.126$
$\mathrm{P}(\mathrm{Y} \leq 0.14158 \ldots)=0.125$
4.3

Given a probability distribution function

$$
\begin{array}{cl}
\mathrm{F}(\mathrm{a})=0 & \mathrm{a}<0 \\
1 / 3 & 0 \leq \mathrm{a}<1 / 2 \\
1 / 2 & 1 / 2 \leq \mathrm{a}<3 / 4 \\
1 & 3 / 4 \leq a
\end{array}
$$

The mass function is
$\mathrm{p}(0)=1 / 3$
$p(1 / 2)=1 / 2-1 / 3=1 / 6$
$p(3 / 4)=1-1 / 2=1 / 2$
4.4

We toss n coins and each coin that comes down tails is re-tossed once.
$\mathrm{X}=$ total number of heads seen.
a) What kind of distribution does X have?

The probability that any coin ultimately shows a head is $\mathrm{q}=\mathrm{p}+(1-\mathrm{p}) \mathrm{p}$ the probability that the first throw was a head + the probability that the first was a tail and the second was a head.
$\mathrm{P}(\mathrm{X}=\mathrm{k})=\mathrm{q}^{\wedge} \mathrm{k} *(1-\mathrm{q})^{\wedge}(1-\mathrm{k})$, a binomial distribution. Its parameters are n and q (where q is a function of p).
4.11

The probability of winning lottery 1 after k plays has a geometric distribution. The mass function is given by"
$\mathrm{P}(\mathrm{X} 1=\mathrm{k})=(\mathrm{p} 1-1)^{\wedge}(\mathrm{k}-1) * \mathrm{p} 1$.
The mass function for lottery 2 is given by $\mathrm{P}(\mathrm{X} 2=\mathrm{k})=(\mathrm{p} 2-1)^{\wedge}(\mathrm{k}-1) * \mathrm{p} 2$.

The probability of winning either (or both) after k plays is the sum of these two probabilities less their product (since winning either is independent of winning the other.
4.14

A coin, with probability p of coming down heads, is thrown until it comes up heads for a second time.
a) What are $P(X=2) P(X=3)$ and $P(X=4)$
$P(X=2)=p^{*} p$ (the probability that it comes up heads both times)
The possibilities for three tosses are.
HTH THH

In each case, there are two H and one T , so each of these has probability $\mathrm{p}^{\wedge} 2 *(1-\mathrm{p})$. These events are disjoint so the total probability is $\mathrm{P}(\mathrm{X}=3)=2$ * $\left(\mathrm{p}^{\wedge} 2\right) *(1-\mathrm{p})$

For four tosses, the possibilities are
HTTH THTH TTHH
This time there are two H and two T and three disjoint possibilities so $\mathrm{P}(\mathrm{X}=4)=3^{*}\left(\mathrm{p}^{\wedge} 2\right)^{*}(1-\mathrm{p})^{\wedge} 2$

In the general case where we throw n coins, the number of heads will be 2 and the number of tails will be $\mathrm{n}-2$. The second head must appear as the last toss (for after that we quit) The first head can occur in any of other ($\mathrm{n}-1$) positions. All of these possible events are disjoint, so we can concluse that $\mathrm{P}(\mathrm{X}=\mathrm{n})=(\mathrm{n}-1)^{*}\left(\mathrm{p}^{\wedge} 2\right)^{*}(1-\mathrm{p})^{\wedge}(\mathrm{n}-2)$.

